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1 ORDINARY DIFFERENTIAL EQUATIONS

1.1 Order

D.E.’s are classified in orders, depending on the highest-order derivative present:

dy

dx
= 2y is 1st order

y sin x+ 2
dy

dx
= 3 is 1st order

(
dy

dx
)3 + (

dy

dx
)2 = −x is 1st order

1 + (
dy

dx
)3 =

d2y

dx2
is 2nd order

d2y

dx2
+ n2x = 0 is 2nd order

x3 d
3y

dx3
+ x2 d

2y

dx2
+ x

dy

dx
+ y = 0 is 3rd order

1.2 Elimination of arbitrary constants

D.E.’s can be formed by the elimination of arbitrary constants from a solution:

eg: if y = a sin x+ b cos x (1)

then differentiating, dy/dx = a cos x− b sin x

and again, d2y/dx2 = −a sin x− b cos x (2)

adding (1) + (2),
d2y

dx2
+ y = 0 X

or: if y = e−x(a sin x+ b cos x)

we let u = yex

so that d2u/dx2 + u = 0 (3)

but
du

dx
=

d(yex)

dx
= yex + ex

dy

dx

moreover
d2u

dx2
= yex + 2ex

dy

dx
+ ex

d2y

dx2

which, from (3) = −yex

simplifying
d2y

dx2
+ 2

dy

dx
+ 2y = 0 X



or: if y = a+ bx+ cx2 + dx3

differentiating dy/dx = b+ 2cx+ 3dx2

and again d2y/dx2 = 2c+ 6dx

and again d3y/dx3 = 6d

and again d4y/dx4 = 0 X

1.3 General solution and particular solution

The ’General Solution’ of an n’th order D.E. contains n arbitrary constants, and satisfies the equa-
tion.

A ’Particular Solution’ is any function which satisfies the equation. Also known as a ’Particular
Integral’.

1.4 Raimes’ Rule for the solution of differential equations

Find the solution by hook or by crook.

1.5 Separable D.E.’s of the 1st order

These are D.E.’s of the form dy/dx = F (x) ·G(y) and can be solved as follows:

separate the variables
dy

G(y)
= F (x) · dx

and integrate

∫

dy

G(y)
=

∫

F (x) · dx

eg: (a trivial case) dy/dx = f(x) · 1

gives y =

∫

f(x)dx+ c X

or: (a trivial case) dy/dx = 1 · g(y)

gives y =

∫

dy

g(y)
+ c X

or dy/dx = x · y
gives log y = x2/2 + c

i.e. y = A · exp(x2/2) X

or dy/dx = e3x−y

gives exp(y) = (1/3) · exp(3x) + c X

or dy/dx = 2x · sec(y)
gives sin(y) = x2 + c X

1.6 Homogeneous D.E.’s of the 1st order

These are D.E.’s of the form dy/dx = f(y/x) and can be solved as follows:



given
dy

dx
= f(

y

x
)

we let y = v · x
so that dy/dx = v + x · dv/dx = f(v)

i.e. x · dv/dx = f(v)− v which is separable,

i.e.
dx

x
=

dv

f(v)− v

and integrating log(Ax) =

∫

dv

f(v)− v
X

eg: dy/dx = (x2 + y2)/xy

= (1 + (y/x)2)/(y/x)

we let y = vx

so that dy/dx = (1 + v2)/v

= 1/v + v

therefore v + x · dv/dx = 1/v + v

i.e. x · dv/dx = 1/v

i.e. log(Ax) = v2/2

i.e. y2 = 2x2log(Ax) X

1.7 D.E.’s reducible to homogeneous form by a substitution

Consider
dy

dx
=

ax+ by + c

a′x+ b′y + c′

We can solve this as follows, since it is homogeneous except for c and c′ . . .

Substitute u = ax+ by + c

and v = a′x+ b′y + c′

which gives du/dx = a+ b(dy/dx)

and dv/dx = a′ + b′(dy/dx)

dividing du/dv = (a+ b(dy/dx))/(a′ + b′(dy/dx))

but dy/dx = u/v

so we have du/dv = (a+ b(u/v))/(a′ + b′(u/v)) which is homogeneous.

so substitute w = u/v

or u = vw

i.e. du/dv = w + v(dw/dv) as in the previous section

For example dy/dx = (2x+ 2y − 2)/(3x+ y − 5)

we let u = 2x+ 2y − 2 (4)

and v = 3x+ y − 5 (5)

which gives du/dx = 2 + 2(dy/dx)

and dv/dx = 3 + dy/dx

dividing du/dv = (2 + 2(dy/dx))/(3 + dy/dx)

= (2 + 2u/v)/(3 + u/v) which is homogeneous

so we let w = u/v (6)

or u = vw



i.e. du/dv = w + v(dw/dv)

but this = (2 + 2w)/(3 + w))

therefore v(dw/dv) = (2− w − w2)/(3 + w))

integrating log Av =

∫

3 + w

(2 + w)(1− w)
dw

which gives log Av = (log(2 + w)− 4 log(1− w))/3

i.e. av3 = (2 + w)/(1− w))4 X

Then we would substitute back using equations (6), (5) and (4).
Note that a simpler case arises if a′/a = b′/b = m

so that dy/dx = (ax+ by + c)/(m(ax+ by) + c′)

which = (ax+ by + c)/(m(ax+ by + c) + c′ −mc)

which = f(ax+ by + c)

so , let v = ax+ by + c

so that dv/dx = a+ b(dy/dx)

or dv/dx = a+ b · f(v) which is already separable.

1.8 Linear D.E.’s of the 1st order

These are D.E.’s of the form : dy/dx+ P (x) · y = Q(x)

Simple cases can be solved directly:

e.g. dy/dx+ y/x = x2

times x x · dy/dx+ y = x3

which is ! d(xy)/dx = x3

integrating xy = x4/4 + c X

In general, they can be solved by multiplying by an ’integrating factor’ exp(
∫

Pdx) (see 1.16)

first note that d(exp

(
∫

Pdx

)

)/dx = exp

(
∫

Pdx

)

· d(exp
(
∫

Pdx

)

)/dx

= P exp

(
∫

Pdx

)

The D.E becomes exp

(
∫

Pdx

)

· (dy/dx+ Py) = Q exp

(
∫

Pdx

)

which is ! d(y · exp
(
∫

Pdx

)

)/dx = Q exp

(
∫

Pdx

)

integrating y · exp
(
∫

Pdx

)

=

∫

Q exp

(
∫

Pdx

)

dx+ c X

e.g. sin(x) · dy/dx+ y cos(x) = sin2 x

i.e. dy/dx+ y cot(x) = sin(x)

the integrating factor is exp

(
∫

cot x

)

= exp(log(sin x)) = sin x

multiplying through sin x · dy/dx+ y cos x = sin2 x (blush !)

which gives y · sin x =

∫

sin2 x dx+ c

= (2x− sin 2x)/4 X



e.g. dy/dx = (x2 − y) x

i.e. dy/dx+ xy = x3

the integrating factor is exp

(
∫

xdx

)

= exp(
x2

2
)

multiplying though gives y · exp(x
2

2
) =

∫

x3 · exp(x
2

2
) dx+ c

we can solve this with u = x2/2

so that du = x dx

thus

∫

x3 · exp(x
2

2
) · dx =

∫

2u · eudu

by parts = 2u · eu −
∫

2eudu

= 2u · eu − 2eu

therefore y · exp(x2/2) = (x2 − 2) exp(x2/2) + c X

1.9 Bernouilli’s Equation

This is a D.E. of the form dy/dx+ P (x) · y = Q(x) · yn We solve it as follows:

divide by yn y−n · dy/dx+ P (x) · y1−n = Q(x)

and now let z = y1−n

so that dz/dx = (1− n) · y−n · dy/dx
substituting, dz/dx+ (1− n) · P (x) · z = (1− n) ·Q(x)

This is now a linear D.E. of the 1st order, and we solve it as in Section 1.8.

e.g. x2y − x3 dy/dx = y4 · cos(x)
rearrange dy/dx− y/x = −y4 · (cos x)/x3

divide by yn y−4 · dy/dx− y−3/x = (cos x)/x3

now let z = y−3 (7)

so that dz/dx = −3 · y−4 · dy/dx
substituting, dz/dx+ 3z/x = 3(cos x)/x3 this is linear of the 1st order

the integrating factor is exp

(
∫

3

x
dx

)

= x3

therefore z x3 =

∫

3 cos x · x
3

x3
dx

integrating, z x3 = 3 sin x+ c

substituting (7), y3 = x3/(3 sin x+ c) X

1.10 D.E’s of the 2nd order with Constant Coefficients

These are D.E.’s of the form

d2y/dx2 + A dy/dx+B y = f(x) (8)

where A and B are constants. If f ≡ 0, the D.E is called the ’homogeneous equation’

d2y/dx2 + A dy/dx+B y = 0

The general solution of the homogeneous equation is called the ’complimentary function’, or ’C.F.’
and suppose that y = v(x) is a ’particular integral’, or ’P.I.’, of (8).



Let us put C.F. = u(x)

and P.I. = v(x)

so we have d2v/dx2 + A dv/dx+B v = f(x)

and d2u/dx2 + A du/dx+B u = 0

adding, d2(u+ v)/dx2 + A d(u+ v)/dx+B (u+ v) = f(x)

Therefore (u + x) is a solution of (8); and it is the general solution since it contains two arbitrary
constants in u. Therefore

general solution = complimentary function + particular integral

Thus solving these equations is done in two halves . . .

1.10.1 Finding the Complimentary Function

This is the general solution of d2y/dx2 + A dy/dx+B y = 0 (9)

To simplify notation, we introduce the operator D = d/dx so (9) becomes

(D2 + AD +B) y = 0

To solve this, we factorise this into (D − a)(D − b) = 0 (10)

this has two solutions D = a and D = b

i.e. dy/y = a dx and dy/y = b dx

integrating log y = ax+ c and log y = bx+ c

i.e. y = C1 eax and y = C2e
bx

Therefore the sum y = C1 eax + C2e
bx (11)

is also a solution, and indeed if a is not equal to b then it has two arbitrary constants,
and is therefore the general solution.

a and b are the roots of m2 + Am+B = 0 which is known as the ’auxiliary equation’.
But if a and b are equal then (11) becomes y = C3e

ax which has only one arbitrary constant,
and is thus not a general solution. We can find the general solution for this case with the substitution:

let y = v eax

so that Dy = D(v eax) = eax Dv + a · v · eax
= eax · (D + a) · v

so that (D − a)2(v eax) = (D − a)(eax ·Dv)

= eax ·D2v

so that (10) becomes eax ·D2v = 0

i.e. D2v = 0

integrating Dv = c2

integrating again v = c2x+ c1

substituting, the general solution is y = (c1 + c2x) · eax X

e.g. D2y − y = 0

i.e. (D2 − 1) y = 0

the auxiliary equation is m2 − 1 = 0

this has two distinct roots m = 0± 1 i.e. a = 1 b = −1

therefore the c.f is y = c1e
+x + c2e

−x
X



or e.g. D2y + 3Dy − 4y = 0

i.e. (D2 + 3D − 4) y = 0

the auxiliary equation is m2 + 3m− 4 = 0

this has two distinct roots m = −4,+1 i.e. a = 1 b = −4

therefore the c.f is y = c1e
x + c2e

−4x
X

or e.g. d2y/dx2 + 6dy/dx+ 9y = 0

i.e. (D2 + 6D + 9) y = 0

auxiliary equation m2 + 6m+ 9 = 0

this has two equal roots ! a = −3, b = −3

thus the c.f is y = (c1 + c2x) e
−3x

X

or e.g. d2y/dx2 + 4y = 0

i.e. (D2 + 4) y = 0

the roots are a = 2i, b = −2i

thus the c.f is y = c1e
2ix + c2e

−2ix

= c1(cos2x+ i sin2x) + c2(cos2x− i sin2x)

= (c1 + c2) cos 2x+ i(c1 − c2) sin 2x

= c3 cos 2x+ c4 sin 2x X

or e.g. d2y/dx2 − 2dy/dx+ 3y = 0

i.e. (D2 +−2D + 3) y = 0

auxiliary equation m2 − 2m+ 3 = 0

the roots are m = (2±
√
−8)/2 = 1± i

√
2

= c1 exp((1 + i
√
2)x) + c2 exp((1− i

√
2)x)

= ex(c1 exp(i
√
2x) + c2 exp(−i

√
2x))

= ex(A cos(
√
2x) +B sin(

√
2x) X

1.10.2 Finding the Particular Integral if f(x) is a Constant

If f(x) is a constant, d2x/dy2 + Ady/x+By = c

then it’s easy : y = c

1.10.3 Finding the Particular Integral if f(x) is a Polynomial

Before we tackle this, we must digress to define the the inverse of an operator.

D−1 is defined to be such that D ·D−1 · y ≡ y

so that if D ≡ d/dx, then D−1 =

∫

( )dx

e.g. x/D = x2/2

or D−2ecx = c−2ecx

Similarly, (D − a)−1 is defined by : (D − a) · (D − a)−1 · y ≡ y



thus our equation (D2 + AD +B) y = f(x)

i.e. (D − a)(D − b) y = f(x)

which we write as y = f(x) / ((D − a)(D − b))

e.g. consider (D2 − 3D + 2) y = x x is a simple polynomial !

or (D − 2)(D − 1) y = x

or y = x / ((D − 2)(D − 1))

= (1/2) / ((1−D/2)(1−D)) · x

=
1

2
(1 +

D

2
+

D2

4
+

D3

8
+ ..)(1 +D +D2 +D3 + ..) · x

=
1

2
(1 +

D

2
+

D2

4
+

D3

8
+ ..)(1 + x+ 0 + 0 + 0 + ..)

=
1

2
(1 + x+

1

2
+

0

4
+

0

8
+ ...)

= x/2 + 3/4 which is the particular integral

the general solution is y = Ae2x +Bex + x/2 + 3/4 X

or consider (D2 + 2D) y = x2

factorising D (D + 2) y = x2

thus the P.I. is y = (1 / (D(D + 2)) · x2

= (1/2D) (1−D/2 +D2/4 +D3/8 + ...) · x2

= (1/2D) (x2 − x+ 1/2)

= (1/2) (x3/3− x2/2 + x/2) (check by substitiution !)

now the C.F. is = A +Be−2x

thus the G.S. is = A +Be−2x + x3/6− x2/4 + x/4 X

This method of expanding 1 / ((D −A)(D − B)) always works if f(x) is a polynomial.

1.10.4 Finding the Particular Integral if f(x) is Not a Polynomial

Here there is no universal method, but some equations are solvable.

E.g. consider f(x) = ecx · Φ(x) where Φ is a polynomial

thus Df = ecx(DΦ+ cΦ)

= ecx(D + c)Φ

therefore D2f = D2ecxΦ = ecx(D + c)2 Φ

moreover (D − a)f = ecx(D + c− a)Φ

in particular (D − c)f = ecxDΦ

and moreover (D − a)−1f = ecx(D + c− a)−1 Φ

[ proof : (D − a)(D − a)−1f = (D − a) ecx(D + c− a)−1 Φ

= ecx(D + c− a)(D + c− a)−1 Φ

= ecx Φ = f Q.E.D. ]

so our P.I. is y = [1 / ((D− a)(D − b))] ecx Φ

reduces to y = ecx [1 / ((D + c− a)(D + c− b)) ]Φ

which can be evaluated as in the previous section, because Φ is a polynomial.



e.g. (D2 +D − 2) y = x ex

or y = [1 / ((D + 2)(D − 1))] x ex

so the P.I. is = ex [1 / ((D + 3)D)] x

= (ex/3) (1−D/3 +D2/9− . . . )D−1 x

= (ex/3) (1−D/3 +D2/9− . . . ) x2/2

= (ex/3) (x2/2− x/3 + 1/9− 0 + 0 . . . )

thus the G.S. is y = Ae−2x +Bex + (ex/3) (x2/2− x/3 + 1/9) X

By taking real parts, this approach works if instead of ex we have a cosine (or ex times a cosine).
Moreover, it still works if instead of x we have a polynomial Φ(x).

e.g. f(x) = Φ(x) · cos(cx) where Φ is a polynomial

consider (D2 + AD +B) y = Φ · cos(cx)
i.e. y = [1 / ((D − a)(D − b))] · Φ · cos(cx)
now cos(cx) = ℜ (eicx)

thus y = ℜ [1 / ((D− a)(D − b))]Φ eicx

= ℜ eicx [1 / ((D + ic− a)(D + ic− b))]Φ

which can be evaluated as in the pre-previous section if Φ is a polynomial, or as in the previous
section if it is ex times a polynomial.

e.g. (D − 1)2 y = cos 3x

i.e. y = [1/(D − 1)2] cos 3x

= ℜ [1/(D − 1)2] ei3x

= ℜ e3ix [1/(D + 3i− 1)2] · 1
= ℜ e3ix · 1/(3i− 1)2

= ℜ e3ix · (3i+ 1)2/(−9− 1)2

= ℜ e3ix · (−9 + 1 + 6i)/100

= (−8 cos 3x+ i · i · 6sin x)/100

thus the G.S. is y = (A+Bx) ex − (8 cos 3x+ 6 sin x)/100 X

Similarly, by taking imaginary parts we can solve f(x) = Φ(x) · sin(cx) . . .

e.g. (D2 + 4) y = x sin 2x

i.e. y = (1 / (D2 + 4)) · x sin 2x

= ℑ (1 / (D2 + 4)) · x e2ix

= ℑ e2ix (1 / ((D + 2i)2 + 4)) · x
= ℑ e2ix (1 / (D2 + 4iD)) · x
= ℑ e2ix (1 / (4iD)) (1−D/4i+D2/(4i)2 − . . . ) · x
= ℑ e2ix (1 / (4iD)) (x+ i/4)

= ℑ e2ix (x/16− ix2/8)

= −cos 2x · x2/8 + sin 2x · x/16
thus the G.S. is y = Ae2ix +Be−2ix − x2/8 · cos 2x+ x/16 · sin 2x

= a sin 2x+ b cos 2x− x2/8 · cos 2x+ x/16 · sin 2x X



1.11 Linear D.E. with constant coefficients

This is a D.E with the form

dny/dxn + a1d
n−1/dxn−1 + · · ·+ any = f(x)

and as with the 2nd-order case (Section 1.10) ,

general solution = complimentary function + particular integral

1.11.1 Finding the Complimentary Function

This is analagous to the 2nd-order case. The C.F. is the solution of

(Dn + a1D
n−1 + a2D

n−2 + · · ·+ an) y = 0

and the auxiliary equation is of degree n

(m− α1)(m− α2) . . . (m− αn) = 0

This has n roots: m = α1, α2, . . . αn If these roots are all distinct,

C.F. = y = A1e
α1x + A2e

α2x + · · ·+ Ane
αnx

and if s of the α’s are the same, e.g. α1 = α2 = · · · = αs then:

C.F. = y = (A1 + A2x+ A3x
2 + · · ·+ Asx

s−1) eα1x + As+1e
αs+1x + · · ·+ Ane

αnx

1.11.2 Finding the Particular Integral

P.I. = y = [1 / (Dn + a1D
n−1 + · · ·+ an))] · f(x)

is tackled in a precisely analagous manner to the 2nd-order case of Sections 1.10.3 to 1.10.5

1.12 Homogeneous Linear D.E.

This is a D.E. of the form

xn(dny/dxn) + a1x
n−1(dn−1y/dxn−1) + · · ·+ any = f(x)

This can be solved with the substitution x = et

let x = et

so that dy/dx = (dy/dt) / (dx/dt) = (dy/dt)/x

i.e. D = (1/x) · d/dt
and D2y = (1/x) · d(Dy)/dt

=
1

x
·
(−1

x2

dx

dt

dy

dt
+

1

x

d2y

dt2

)

= (1/x2) · (−dy/dt + d2y/dt2) since dx/dt = x

further D3y = (1/x) · d/dt · [(1/x2) (−dy/dt+ d2y/dt2)]

=
1

x

(−2

x3

dx

dt
(−dy

dt
+

d2y

dx2
) +

1

x2
(−d2y

dx2
+

d3

dt3
)

)

=
1

x3

(

2
dy

dt
− 3

d2y

dx2
+

d3y

dt3

)

The faxtor 1/xr at the beginning of these expressions will cancel with the xr in the D.E. and will reduce
it to a Linear D.E. with Constant Coefficients.



e.g. (x3D3 + 3x2D2 + xD) y = 24x2

let x = et

so D = (1/x) · d/dt
D2 = (1/x2) · (−d/dt+ d2/dt2)

D3 = (1/x3)(2d/dt− 3d2/dt2 + d3/dt3)

i.e. 2dy/dt− 3d2y/dt2 + d3y/dt3 − 3dy/dt+ 3d2y/dt2 + dy/dt = 24e2t

i.e. d3y/dt3 = 24e2t

d2y/dt2 = 12e2t + A′

dy/dt = 6e2t + A′t+B

y = 3e2t + At2 +Bt + C

or y = 3x2 + A(log x)2 +B log x+ C X

1.13 Simultaneous Linear D.E.’s with Constant Coefficients

e.g. dx/dt+ dy/dt− 3x− 15y = −4t (12)

and dx/dt+ 2dy/dt+ x = −5t2 (13)

So we will redefine D D ≡ d/dt

from (12) (D − 3)x+ (D − 15)y = −4t (14)

from (13) (D + 1)x+ 2Dy = 5t2 (15)

(14) x 2D 2D(D − 3)x+ 2D(D − 15)y = −8 (16)

(15) x (D-15) (D − 15)(D + 1)x+ 2D(D − 15)y = 10t− 75t2 (17)

(16) - (17) (2D2 − 6D −D2 − 14D − 15))x = 75t2 − 10t− 8

or (D2 + 8D + 15)x = 75t2 − 10t− 8

or (D + 3)(D + 5)x = 75t2 − 10t− 8

so the C.F. is x = Ae−3t +Be−5t

and the P.I. is x = [1 / ((D + 3)(D + 5))] (75t2 − 10t− 8)

= [1 / ((1 +D/3)(1 +D/5))] (5t2 − 2t/3− 8/15)

= [1−D/3 +D2/9− . . . ] [1−D/5 +D2/25− . . . ] (5t2 − 2t/3− 8/15)

= [1−D/3 +D2/9− . . . ] [5t2 − 2t/3− 8/15 − 2t+ 2/15 + 6/15]

= [1−D/3 +D2/9− . . . ] [5t2 − 8t/3]

= 5t2 − 8t/3− 10t/3 + 8/9 + 10/9 = 5t2 − 6t/3 + 2

thus G.S. is x = Ae−3t +Be−5t + 5t2 − 6t+ 2 X

We find y by eliminating dy/dt between (12) & (13), as this gives a simple algebraic equation in y

2x(12) - (13) dx/dt− 7x− 30y = −8t− 5t2

i.e. y = (1/30) (−10Ae−3t − 12Be−5t − 20 + 60t− 30t2) X

or e.g. Dy + x = 0 (18)

and Dx− y = 0 (19)

D x (19) D2x−Dy = 0 (20)

(18) + (20) D2x+ x = 0

thus x = Acos t+Bsin t X as in Section 1.2

subst in (19) y = −Asin t +Bcos t X



1.14 Exact D.E. of the 1st order

Consider a function Φ(x, y) Then dΦ = (δΦ/δx)dx+ (δΦ/δy)dy
This is a total, or exact, differential.

Note that, assuming differentiability, δ2Φ/δ · δy = δ2Φ/δyδx

Suppose we now have a 1st-order D.E. dy/dx = f(x, y)

Rearranging , M(x, y)dx+N(x, y)dy = 0 (21)

If now M and N happen to be such that (21) can be expressed as dΦ = 0
then the solution of the D.E. is, integrating, Φ(x, y) = 0

e.g. xdy + ydx = 0

can be expressed as d(xy) = 0

integrating xy = c X

1.14.1 Necessary condition on M and N for M(x, y)dx+N(x, y)dy to be exact

If Φ(x, y) exists, and DΦ(x, y) = Mdx+Ndy

then M ≡ δΦ/δx and N ≡ δΦ/δy

so, by differentiabilty, δM/δy = δN/δx (22)

1.14.2 Sufficient condition on M and N for M(x, y)dx+N(x, y)dy to be exact

Is that also a sufficient condition ? i.e., given δM/δy = δN/δx what becomes of (21) ?
Let us define u(x, y) by M = δu/δx where u is differentiable.

thus δM/δy = δ2u/δyδx

thus from (22) δN/δx = δ2u/δyδx

integrating δu/δy = N + f(y) where f is an arbitrary function

subst in (21) (δu/δx)dx+ (δu/δy − f(y))dy = 0 (23)

but du = (δu/δx)dx+ (δu/δy)dy (24)

thus (24) in (23) du− f(y)dy = 0

and since we can choose f ≡ 0 this is of the form dΦ = 0 Q.E.D.

e.g. (x− y + z)dx− (x+ y − 1)dy = 0

now since δM/δy = −1 = δN/δx this is exact

and δΦ/δx = x− y + 2 thus Φ = x2/2− xy + 2x+ f(y)

and δΦ/δy = −x− y + 1 thus Φ = −xy − y2/2 + y + g(x) so we identify f and g

therefore Φ = x2/2− y2/2− xy + 2x+ y plus a constant

the solution is Φ = const.

i.e. x2/2− y2/2− xy + 2x+ y = c X

e.g. M(x)dx−N(y)dy = 0 see Section 1.5

gives Φ =

∫

M(x)dx+

∫

N(y)dy = c

so this method also includes the Separable D.E. of the 1st order as a special case.



1.15 Reduction to Exact Form by an Integrating Factor

If Mdx+Ndy 6= 0 is not exact,

nevertheless µMdx+ µNdy = 0 may still be exact;

i.e. δ(µM)/δy = δ(µN)/δx (25)

Then µ is called an ’integrating factor’. (compare Section 1.8)

e.g. (y/x)dx+ dy = 0 is not exact

but multiply by x, ydx+ xdy = 0 and this is exact

d(xy) = 0

x = c X

µ(x, y) is found from (25) δ(µM)/δy = δ(µN)/δx

or M(δµ/δy) + µ(δM/δy) = N(δµ/δx) + µ(δN/δx)

This is intractable. However, there are certain D.E.’s for which it becomes tractable ;
for example, there are D.E.’s which give µ = µ(x) only, not µ = µ(x, y)

so that δµ/δy = 0

and δµ/δx = dµ/dx

thus (23) simplifies to µ (δM/δy) = N (dµ/dx) + µ (dN/dx)

i.e. N (dµ/dx) = µ (δM/δy − δN/δx)

i.e. (1/µ) (dµ/dx) = (1/N) (δM/δy − δN/δx)

Now for µ = µ(x), the LHS is a function of x, thus if we are given M and N such that
(1/N) (δM/δy − δN/δx) = func(x) we will probably be able to integrate (24) to find a µ.

1.16 Linear D.E.’s of the 1st order revisited

Linear D.E.’s of the 1st order (see Section 1.8) represent a particular application of this technique.

for if dy/dx+ P (x) y = Q(x)

although (Py −Q)dx+ dy = 0 is not exact,

we have 1/N (δM/δy − δN/δx) = P = func(x) satisfying (25)

thus (24) is 1/γ (δµ/dx) = P (x)

i.e. log µ =
∫

Pdx

i.e. µ = exp(
∫

Pdx)

which derives the integrating factor that we introduced arbitrarily in Section 1.8.

multiplying, (Py −Q) exp(
∫

Pdx) dx+ exp(
∫

Pdx) dy = 0

should be exact; i.e. δΦ/δx = (Py −Q) exp(
∫

Pdx) (26)

and δΦ/δy = exp(
∫

Pdx) (27)

integrating (26) Φ = y exp(
∫

Pdx)−
∫

Qexp(
∫

Pdx)dy + A(y)

integrating (27) Φ = y exp(
∫

Pdx) +B(x)

combining, Φ = y exp(
∫

Pdx)−
∫

Q exp(
∫

Pdx) dy = C X

1.17 First Order D.E.’s with One Variable Absent

If we put p ≡ dy/dx then the general 1st order D.E. is f(x, y, p) = 0
If p is absent, then f(x, y) = 0 is the solution.
If x is absent, then f(y, p) = 0 can often be reduced to one of two simple cases:



1) If p is a function of y p = Φ(y)

i.e. dx = dy / Φ(y) which is separable

2) If y is a function of p y = Φ(p)

differentiating p = dy/dx = Ψ ′(p) · (dp/dx) which is also separable

i.e. x =
∫

(Ψ ′(p) / p) dp+ c

and y = Ψ (p) with a parametric solution x(p) and y(p)

If y is absent, then f(x, p) = 0 and we distinguish the same two simple cases:

1) If p is a function of x p = Φ(x)

dy = Φ(x) dx

i.e. y =
∫

Φ(x) dx

2) If x is a function of p x = Φ(p)

differentiating 1 = Ψ ′(p) · (dp/dx)
1 = Ψ ′(p) · p · (dp/dy)

integrating y =
∫

p Ψ ′(p)dp + c

and x = Ψ (p) with a parametric solution x(p) and y(p)

E.g. p2 + 2yp = 3y2

(p+ 3y)(p− y) = 0

p = −3y or p = y

∴ log y = −3x+ A

or log y = x+B

i.e. y = c1exp(−3x)

or y = c2exp(x) X

E.g. 3p5 − py + 1 = 0

i.e. y = 3p4 + 1/p

differentiating p = (12p3 − 1/p2) (dp/dx)

separating x =
∫

(12p2 − 1/p3) dp+ c = 4p3 + 1/2p2 + c

and y = 3p4 + 1/p X

E.g. x = p + p4

differentiating 1 = (1 + 4p3) (dp/dx) = (p+ 4p4) (dp/dy)

separating y =
∫

(p+ 4p4) dp = p2/2 + 4p5/5 + c

and x = p + p4 X

1.18 Clairault’s Equation

This is an equation of the form y = x · p+ f(p) where p ≡ dy/dx

differentiating, p = p+ x(dp/dx) + f ′(p)(dp/dx)

or (x+ f ′(p)) (dp/dx) = 0

therefore either dp/dx = 0

or x+ f ′(p) = 0



1) If dp/dx = 0 then p = c

substituting, y = cx+ f(c) X the General Solution

2) If x+ f ′(p) = 0 then x = −f ′(p)

substituting, y = −pf ′(p) + f(p) X a Singular Solution

This solution contains no arbitrary constants, but it cannot be found from the G.S. !
It is called a ’singular solution’.

e.g. y = xp + 1/p

differentiating, p = p+ x(dp/dx)− (1/p2) dp/dx

(x− 1/p2) (dp/dx) = 0

thus either (dp/dx) = 0 thus p = c

substituting y = cx+ 1/c X the General Solution

or x = 1/p2

substituting y = 2/p

separating, y2 = 4x X a Singular Solution

y

x

y   = 4x2

Figure 1: The Singular Solution y2 = 4x as the Envelope of the family y = cx+ 1/c

The curve y2 = 4x is the envelope of the family of lines y = cx+ 1/c
and since they are tangential, dy/dx is the same.

1.19 Second order D.E.’s with one variable absent

The general second-order D.E. is F (x, y, y′, y′′) = 0

1.19.1 If y is absent

If y is absent, then we have F (x, y′, y′′) = 0
This is easy: we put y′ = p, and get a 1st-order equation in p and x : F (x, p, p′) = 0

e.g. x y′′ = 1 + y′

i.e. x dp/dx = 1 + p

i.e.
∫

dp/(1 + p) =
∫

dx/x+ A

i.e. log (1 + p) = log x+ A

i.e. p = Bx− 1

i.e. y = Cx2 − x+D X



1.19.2 If x is absent

If x is absent, then we have f(y, y′, y′′) = 0 So y′′ = dp/dx = p · dp/dy
which gives us g(y, p, dp/dy) = 0 which is a 1st-order equation in p and y.

e.g. y′′ = 2y3/a4

given the B.C. y = a and y′ = 1 when x = 0

i.e. y′′ = p · dp/dy = 2y3/a4

separating p2 = (y/a)4 + A

but from y = a when p = 1 A = 0

i.e. p2 = (y/a)4

i.e. p = (y/a)2 (+ve because of the B.C.)

separating −a2/y = x+B

but from y = a when x = 0 B = −a

thus −a2/y = x− a

or y = a2/(a− x) X

1.20 General Linear D.E. of the 2nd Order

The general linear second-order D.E. is A(x)y′′ +B(x)y′ + C(x)y = E(x) (28)

its Complimentary Function is the G.S. of A(x)y′′ +B(x)y′ + C(x)y = 0 (29)

and its Particular Integral is any solution of A(x)y′′ +B(x)y′ + C(x)y = E(x)

We can reduce (28) to 1st order if we happen to know a z(x) which is a P.I. of (28),
or even a P.I. of (29).

To do this, we let y = w · z
where z is known to satisfy Az′′ +Bz′ + C = 0

so that y′ = w′z + wz′ and y′′ = w′′z + 2w′z′ + wz′′

substituting A (w′′z + 2w′z′ + wz′′) +B (w′z + wz′) + C(z) = E

using Az′′ +Bz′ + C = 0 : Azw′′ + (2Az′ +Bz)w′ = E

and since z(x) is known, we now have a 1st-order equation in w′.

e.g. (2x+ x2)y′′ − 2(1 + x)y′ + 2y = 0

given that y = x2 is a P.I.

We let y = w(x) · x2 be the G.S.

so that (2x+ x2)(w′′x2 + 4xw′ + 2w) − 2(1− x)(w′x2 + 2xw) + 2wx2 = 0

i.e. (2x3) + x4)w′′ + (8x2 + 4x3 − 2x2 − 2x3)w′ = 0

i.e. w′′/w′ = (6 + 2x)/(x+ 2x2) = (−3/x) + 1/(2 + x)

integrating log w′ = −3log x+ log(2 + x) + a

antilogs, w′ = b(2 + x)/x3

integrating w = −b/x2 − b/x+ c

thus G.S is y = wx2 = −b(1 + x) + cx2
X

1.21 Exact Linear D.E. of the 2nd Order

If, in the equation A(x)y′′ +B(x)y′ + C(x)y = E(x)
the L.H.S is = d (f(x, y, y′)) / dx then the equation is said to be ’exact’,
and its ’First Integral’ is the 1st-order D.E. f(x, y, y′) +

∫

Edx + c



e.g. x2y′′ + xy′ − y = x2

integrating term by term,
∫

x2y′′dx = x2y′ −
∫

2xy′dx = x2y′ − 2xy +
∫

2ydx

2nd term by parts
∫

xy′dx = xy −
∫

ydx

3rd term
∫

−ydx = −
∫

ydx

summing x2y′ − xy +
∫

(2y − y − y)dx = x2y′ − xy = x3/3 + a X

In a similar manner, we can derive a condition for exactness.

Consider Ay′′ +By′ + Cy = E

term by term: Ay′′ = Ay′ −
∫

A′y′ = Ay′ − a′y +
∫

A′′ydx

2nd term
∫

By′ = By −
∫

B′y

3rd term
∫

Cy =
∫

Cy

summing, the D.E. is Ay′ −Ay′ +By +
∫

(A′′ − B′ + C)y = E + a

which is exact if A′′ − B′ + C = 0 and the ’first integral’ is Ay′ + (−A′ +B) y

1.22 Reduction to Exact Form by an Integrating Factor

If Ay′′ +By′ + Cy = E is not exact,

i.e. A′′ −B′ + C 6= 0

nevertheless µAy′′ + µBy′ + µCy = µE may still be exact

i.e. (µA)′′ − (µB)′ + µC = 0

or d(µA)/dx− d(µB)/dx+ µC = 0 then µ(x) is called an ’integrating factor’

E.g.: Show that ex is an I.F. of y′′ + xy′ + xy
and hence solve y′′ + xy′ + xy = 0 subject to y′ = 0 when x = 1.

To show that exy′′ + xexy′ + xexy = 0 is exact,

we evaluate d2(ex)/dx2 − d(xex)/dx+ xex

= ex − xex − ex + xex = 0 therefore it is exact.

The 1st integral is exy′ − exy + xexy = a

substituting x = 1, y′ = 0 −exy + exy = a

so a = 0

substituting y′ − y + xy = 0

separating dy/y = (1− x)dx

integrating log y = x− x2/2 + b X

1.23 Solution in Series (Frobenius’ Method)

This is a series method of solving P (x)y′′ +Q(x)y′ +R(x) = 0
which assumes that y = xt (a0 + a1x+ a2x

2 + · · ·+ anx
n + · · · )

so that y =
∞
∑

0

an x
n+t

y′ =
∞
∑

0

(n + t) an x
n+t−1

y′′ =
∞
∑

0

(n + t)(n+ t− 1) an x
n+t−2



E.g. 2xy′′ + y′ − xy = 0

substituting

∞
∑

0

(2(n + t− 1) + (n + t)) anx
n+t−1 +

∞
∑

0

anx
n+t−1 ≡ 0

Now this is an identity for all x ; therefore all coefficients on the L.H.S must vanish.

the coefficient of xt−1 is [2(t− 1)t+ t]a0 = 0

assuming a0 6= 0 , 2(t− 1)t = 0

i.e. t = 0 or t = 1/2

the coefficient of xt is [2t(t+ 1) + (1 + t)] a1 = 0

i.e. (1 + t) (2t+ 1) a1 = 0

and since t = 0 or t = 1/2 , a1 = 0

the coefficient of xn+t−1 is (n+ t) (2n+ 2t− 1) an − an−2 = 0

i.e. an = an−2/[(n+ t)(2n + 2t− 1)] (30)

thus for n odd, · · · = a7 = a5 = a3 = a1 = 0

whereas for n even we have two possible solutions :

1) t = 0, giving an = an−2 / [n(2n− 1)]

thus a2 = a0/(2× 3) and a4 = a0/(2× 4× 3× 7)

and a6 = a0/(2× 4× 6× 3× 7× 11)

thus y = a0(1 + x2/(2× 3) + x4/(2× 4× 3× 7) + x6/(2× 4× 6× 3× 7× 11) + · · · )
2) t = 1/2, giving y = a0x

1/2(1 + x2/(2× 5) + x4/(2× 4× 5× 9) + · · · )
Therefore the following is a General Solution :

y = A(1 + x2/(2× 3) + x4/(2× 4× 3× 7) · · · ) +Bx1/2((1 + x2/(2× 5) + x4/(2× 4× 5× 9) · · · )
On the Convergence of Series . . .

If s =
∞
∑

0

un

then if lim
n→∞

|un+1/un| < 1 then the series converges

whereas if lim
n→∞

|un+1/un| > 1 then the series diverges.

E.g. for (30) lim
n→∞

| an
an−2

x2| = lim
n→∞

|x2/[(n+ t)(2n + 2t− 1)]| = 0

So the series (30) is convergent for both values of t, and for all x.

Or e.g. y′′ − y = 0

substitute as before y =

∞
∑

0

anx
n+t so that y′′ =

∞
∑

0

(n+ t)(n + t− 1)anx
n+t−2

we get

∞
∑

0

(n + t)(n+ t− 1)anx
n+t−2 −

∞
∑

0

anx
n+t = 0

the coefficient of xt−2 (t− 1)t a0 = 0 (31)

coefficient of xt−1 t(t + 1) a1 = 0 (32)

coefficient of xt+n−2 (n+ t− 1)(n+ t)an − an−2 = 0 (33)

from (31) and (32), if a0 6= 0 then t = 0 or 1 so a1 = 0 (34)

likewise if a1 6= 0 then t = 0 or− 1 so a0 = 0 (35)

or if a1 6= 0 and a1 6= 0 then t = 0 (36)



Each of these solutions will give us an equivalent G.S. We will take solution (36).

Putting t = 0 in (33) an = an−2/((n− 1)n)

i.e. a2 = a0/2! , a3 = a1/3! , a4 = a0/4! , a5 = a1/5! , etc

thus y = a0(1 + x2/2! + x4/4! + · · · ) + a1(x+ x3/3! + x5/5! + · · · )
= a0 cosh x+ a1 sinh x X

We will show that taking solution (34) gives an equivalent solution :

Putting t = 1 in (33) an = an−2/(n(n + 1))

i.e. a2 = a0/3! , a3 = 0/4! , a4 = a0/5! , a5 = 0 , etc

thus y = x0 (a0 + a1x+ a2x
2 + · · · )

= a0 (x+ x3/3! + x5/5! + · · · )
= a0 sinh x

And similarly, the case t = 0 gives us y = a1 cosh x X

1.24 Legendre’s Equation

Legendre’s Equation is (1− x2)y′′ − 2xy′ + l(l + 1)y = 0 where l is known as the ’order’.
It can be solved by Frobenius’ Method.

let y =

∞
∑

0

anx
n+t

so that y′ =
∞
∑

0

(n+ t)anx
n+t−1

and y′′ =
∞
∑

0

(n+ t)(n+ t− 1)anx
n+t−2

Substituting in Legendre’s Equation,
∑

(n+ t)(n + t− 1)anx
n+t−2 −

∑

(n+ t)(n + t− 1)anx
n+t

−2
∑

(n + t)anx
n+t −

∑

l(l + 1)anx
n+t = 0

i.e.
∑

(n + t)(n+ t− 1)anx
n+t−2 −

∑

[(n+ t− 1)(n+ t)− l(l + 1)] anx
n+t = 0

The lowest power of x is xt−2, and its coefficient is (t− 1) t a0 = 0 (31)

the coefficient of xt−1 gives t (t+ 1) a1 = 0 (32)

As in the previous section, we will take t = 0, a0 6= 0, a1 6= 0 to get the General Solution.

coefft of xn+t−2 (n+ t− 1)(n+ t)an − [(n+ t− 1)(n+ t− 2)− l(l + 1)]an−2 = 0

setting t = 0 an = an−2[(n− 1)(n− 2)− l(l + 1)] / (−1)n

so for n = 2 a2 = −l(l + 1)a0 / 2!

for n = 3 a3 = [2.1− l(l + 1)] a1 / 3!

for n = 4 a4 = [3.2− l(l + 1)] a2 / 4.3 = −[3.2− l(l + 1)] l(l + 1) a0

for n = 5 a5 = [4.3− l(l + 1)] [2.1− l(l + 1)] a1 / 5!

thus the G.S. is y = a0 [1− l(l + 1)x2/2!− (3.2− l(l + 1)) l(l + 1)x4/4! · · · ] +
+ a1 [x+ (2.1− l(l + 1))x3/3! + (4.3− l(l + 1))(2.1− l(l + 1))x5/5! + · · · ] etc

If l is not a positive integer, both series are infinite in length.



1.25 Legendre Polynomials

Legendre Polynomials, also known as Zonal Harmonics, arise when l is a positive integer.

If l = 0 the second series remains infinite, but the first becomes = a0
If l = 1 the first series remains infinite, but the second becomes = a1x (since 2.1− l(l + 1) = 0)
If l = 2 the second series remains infinite, but the first becomes = a0(1−3x2) (since 3.2−l(l+1) = 0)
If l = 3 the first series remains infinite, but the second becomes = a0(x− 5x3/3)
These are called the Legendre Polynomials, or Zonal Harmonics.
The Legendre Polynomial of order l is denoted by Pl(x) The first few are:

P0(x) = 1

P1(x) = x

P2(x) = 1/2 · (3x2 − 1)

P3(x) = 1/2 · (5x3 − 3x)

P4(x) = 1/8 · (35x4 − 30x2 + 3)

P5(x) = 1/8 · (63x5 − 70x3 + 15x)

where a0 and a1 have been chosen according to a convention.
We can see that the highest-order term is xl, which is why l is known as the ’order’.

from (33) an−2 = ([n(n− 1)] / [n− 2)(n− 1)− n(n− 1)]) · an
= n(n− 1)an / (n

2 − 3n+ 2− n2 − n)

= −n(n− 1)an / (2(2n− 1))

also, an−4 = −(n− 2)(n− 3)an−2 / (4(2n− 3))

= n(n− 1)(n− 2)(n− 3)an / (2 · 4(2n− 1)(2n− 3))

thus Pn(x) = an[xn − n(n− 1)an/2(2n− 1) + n(n− 1)(n− 2)(n− 3)an/2 · 4(2n− 1)(2n− 3)]

an is conventionally given the arbitrary value an = (2n − 1)(2n− 3) . . . 3 · 1 / n for n 6= 0

and an = 1 for n = 0

1.26 Bessel’s Equation

Bessel’s Equation is x2y′′ + xy′ + (x2 − l2)y = 0 where l is known as the ’order’.
It can be solved by Frobenius’ Method. All sums are from 0 to ∞.

let y =
∑

anx
n+t

so that y′ =
∑

(n+ t)anx
n+t−1

and y′′ =
∑

(n+ t)(n+ t− 1)anx
n+t−2

Substituting,
∑

(n+ t)(n + t− 1)anx
n+t +

∑

(n + t)anx
n+t +

∑

anx
n+t+2 −

∑

l2anx
n+t = 0

i.e.
∑

[(n+ t)2 − l2]anx
n+t +

∑

anx
n+t+2 = 0

The lowest power of x is xt ; its coefficient is (t2 − l2) a0 = 0

and xt+1 gives ((t+ 1)2 − l2) a1 = 0

we will take a1 = 0, a0 6= 0 and t = ±l to give the G.S.

coefficient of xn+t [(n + t)2 − l2] an + an−2 = 0

i.e. an = −an−2 / [(n+ t)2 − l2]

= −an−2 / [(n+ t+ l)(n + t− l)]

thus since a1 = 0, a1 = a3 = a5 = a7 etc = 0



and for even powers, a2 = −a0 / [(2 + t+ l)(2 + t− l)]

and a4 = a0 / [(4 + t+ l)(4 + t− l)(2 + t+ l+)(2 + t− l)]

Now the solution y = xt (a0 + a1x+ a2x
2 + a3x

3 + . . . )

where t = +l or − l

For t = +l y = a0 x
l [1− x2/2(2l− 2) + x4/(2 · 4(2l − 2)(2l + 4))− · · · ] (37)

and if we give a0 the conventional normalising value a0 = 1 / (2l Γ(l + 1))
then our series becomes a Bessel Function of the First Kind, order l, and is denoted by Jl (x)

For t = −l y = b0 x
−l [1− x2/2(2− 2l) + x4/(2 · 4(2− 2l)(4− 2l))− · · · ] (38)

and if we give b0 the conventional normalising value b0 = 1 / (2l Γ(1− l))
then our series becomes a Bessel Function of the First Kind, order −l, and is denoted by J−l (x)

If l is not an integer, the General Solution of Bessel’s Equation is y = AJl(x) +B J−l(x) X

But if l is an integer, for example if l = −2,

then (37) is y = a0 x
−2 [1− x2/2(2l− 2) + x4/(2 · 4(2l − 2)(2l + 4))− · · · ]

To avoid difficulties with 1 / (2l + 4),

we write y = a0/(2l + 4) · xl [1− x2/2(2l − 2) + x4/(2 · 4(2l − 2)(2l + 4))− · · · ]
and call a0/(2l + 4) = A

putting l = −2, y = Ax−2[x4/(2 · 4 · −2) − x6/(2 · 4 · 6 · −2 · 2) + · · · ]

The second series (38) is simpler: putting l = −2, y = B x2 [1− x2(2 · 6) + · · · ]
But note that if A = −16B, the two series are identical !
Thus, robbed of one of our arbirtary constants, we cannot form the General Solution.

2 PARTIAL DIFFERENTIAL EQUATIONS

Or f (x, y, z, δz/δx, δz/δy, δ2z/δx2, δ2z/δy2, · · · ) = 0

As in ordinary D.E.s, the order is defined as the order of the highest partial devivative in the equation.

A trivial example of a P.D.E.: δz/δx = 0

which has the solution z = f(y) where f(y) is an arbitrary function of integration.

2.1 Elimination of Arbitrary Constants

This can be used to form P.D.E.’s, just as with O.D.E.’s (section 1.2).

e.g. z = ax+ by

differentiating δz/δx = a and δz/δy = b

substituting z = x · δz/δx+ y · δz/δy

2.2 Elimination of Arbitrary Functions

e.g. z = x · f(y/x) (39)

differentiating δx δz/δx = f(y/x)− (y/x) · f ′(y/x) (40)

differentiating δy δz/δy = (x/x) · f ′(y/x) = f ′(y/x) (41)

substituting (41) in (40) δz/δx+ (y/x)δz/δy = f(y/x)

multiplying by x x · δz/δx+ y · δz/δy = x · f(y/x)
substituting in (39) z = x · δz/δx+ y · δz/δy X



or e.g. z = f(x− ay) + g(x+ ay) where a is given

differentiating δx δz/δx = f ′(x− ay) + g′(x+ ay)

differentiating δy δz/δy = −a f ′(x− ay) + a g′(x+ ay)

and again δ2z/δx2 = f ′′(x− ay) + g′′(x+ ay)

and δ2z/δy2 = a2f ′′(x− ay) + a2g′′(x+ ay)

thus δ2z/δy2 = a2 δ2z/δx2
X

2.3 Linear Partial Differential Equation with Constant Coefficients

e.g. δz/δx− α δz/δy = 0

consider f(αx+ y), such that δf/δx = αf ′ = α δf/δy

thus z = f(αx+ y) X

e.g. δ2z/δx2 = 0

integrating, δz/δx = f(y)

and again, z = x f(y) + g(y) X

e.g. δ2z/δy2 = xy

integrating, δz/δy = x2y/2 + f(y)

and again, z = x2y2/4 +
∫

f(y)dy + g(x)

= x2y2/4 + F (y)dy + g(x) X

2.4 The Homogeneous Partial Differential Equation

This is δ2z/δx2 + Aδ2z/δxδy+B δ2z/δy2 = φ(x, y)

As in section 1.10.1, we put D = δ/δx and D′ = δ/δy

so the equation becomes (D2 + ADD′ +BD′2) z = φ(x, y)

to solve, we factorise into (D − αD′) (D − βD′) z = φ(x, y) where α and β are constants.

As before, the General Solution = Complimentary Function + a Particular Integral,
where the C.F. is the G.S. of (D − αD′) (D − βD′) z = 0
and the proof is exactly analagous to that in section 1.10.1.

2.4.1 Finding the Complimentary Function

This is the general solution of (D − αD′) (D − βD′) z = 0

which has two solutions, D = αD′ and D = βD′

or δz/δx− αδz/δy = 0 and δz/δx− βδz/δy = 0

We solved these in section 2.3: they give z = f(αx+ y) and z = g(βx+ y)

Therefore the sum z = f(αx+ y) + g(βx+y) is also a solution,

and indeed if α 6= β it has two arbitrary functions, and is therefore the Complimentary Function.

But if α = β, then we use Raimes’ Rule: z = f(αx+ y) + xg(αx+ y)

or z = f(αx+ y) + yg(αx+ y)

or z = xf(αx+ y) + yg(αx+ y)

These are all equivalent General Solutions.



2.4.2 Finding the Particular Integral

The method of putting z = 1/[(D − αD′)(D − βD′)] · φ(x, y)
and expanding in series, as in section 1.10.3, can still be used.

For example δ2z/δx2 − 3δ2z/δxδy + 2δ2z/δy2 = xy

or (D2 − 3DD′ + 2D′2) z = xy

i.e. (D − 2D′)(D −D′) z = xy

thus the C.F. is z = f(2x+ y) + g(x+ y)

and a P.I. is z = 1/[(D − 2D′)(D −D′)] · xy
= 1/[D2(1− 2D′/D)(1−D′/D)] · xy
= 1/D2 · (1 + 2D′/D + · · · )(1 +D′/D + · · · ) · xy
= 1/D2 · (1 + 3D′/D + · · · ) · xy
= 1/D2 · (xy + 3x/D + · · · )
= 1/D2 · (xy + 3x2/2 + · · · )
= 1/D · (x2y/2 + x3/2)

= x3y/6 + x4/8

thus G.S = C.F. + P.I. is z = f(2x+ y) + g(x+ y) + x3y/6 + x4/8 X

2.5 Homogeneous Linear P.D.E. with Constant Coefficients

δ2z

δx2
+ A

δ2z

δxδy
+B

δ2z

δy2
+ C

δz

δx
+ E

δz

δy
+Mz = φ(x, y)

This is solved, like the homogeneous P.D.E., by factorising into (D−αD′−m)(D−βD′−n)z = φ(x, y)

This is not always possible, e.g. δ2z/δx2 − δz/δy = 0

because (D2 −D′) z = 0 is not factorisable since
√
D

′

has no meaning

Then as before, General Solution = Complimentary Function + Particular Integral

2.5.1 Finding the Complimentary Function

This is, as before, the solution of the ’Reduced Equation’.

The Reduced Equation is (A− αD′ −m) (A− βD′ − n) = 0

which has two solutions A− αD′ −m = 0 and A− βD′ − n = 0

We know from section 2.3 if n = 0 this gives z = f(βx− y)

so we try the substitution z = v(x) · (βx− y)

so that Dz = vDf + fDv

and D′z = vD′f

Substituting this in (A− αD′ −m) = 0

gives vDf + fDv − βvD′f − nvf = 0

but since (D − βD′)f = 0, then vDf = βvD′f

substituting, fDv − nvf = 0

i.e. Dv − nv = 0

i.e. dv/dx = nv

this 1st-order D.E gives v = enx

so that z = enxf(βx+ y)

and similarly for the other solution, so that the C.F. is z = emxg(αx+ y) + enxf(βx+ y)
This fails to be the C.F. if α = β and m = n ; then the C.F. is z = enxf(αx+ y) + x enxg(αx+ y) ?



2.5.2 Finding the Particular Integral

As before, z = [1/((D − αD′ −m) (D − βD′ − n)] · φ(x, y)
i.e. z = (1/mn) · [1/((1−D/m− αD′/m) (1−D/n− βD′/n)] · φ(x, y)

If φ(x, y) is a polynomial in x and y, then the expansion method of section 1.10.3 still works.
If φ(x, y) is not a polynomial, then we may still be able to find a particular integral,
if it is of one of a number of special forms analagous to those in section 1.10.4.
For example, if φ(x, y) = eax+by · u(x, y) where u(x, y) is a polynomial,
then we can show that for any operator F (D,D′) which is a polynomial or series in D and D′, then

then F (D,D′) [eax+by · u(x, y)] = eax+by · F (D + a,D′ + b) · u(x, y)
Proof : D [eax+by · u(x, y)] = aeax+by · u+ eax+by ·Du

i.e. = eax+by · (D + a) · u
similarly D′ [eax+by · u(x, y)] = eax+by · (D′ + b) · u
re-applying, Dn (eax+by · u) = eax+by · (D + a)n · u
further DmD′n (eax+by · u) = eax+by · (D + a)m(D′ + b)n · u
Thus the polynomial F (D,D′) =

∑

ai D
mD′n

gives F (D,D′) · eax+by · u =
∑

ai D
mD′n eax+by

= eax+by ·
∑

ai D
mD′n · u

= eax+by · F (D,D′) · u Q.E.D.

Hence, we can also prove that (1/F (D,D′)) · eax+by · u = eax+by · (1/F (D + a,D + b))) · u
either by expanding in series, or by multiplying both sides on the left by F (D,D′)

With these theorems we can solve the case φ(x, y) = eax+by · (polynomial)

For example, (D −D′)(D +D′ + 1) z = x ex+y

the C.F. is z = emxg(αx+ y) + enxf(βx+ y)

or in this case = f(x+ y) + e−xg(−x+ y)

The P.I. is z = [1/((D −D) (D +D′ + 1)] · x ex+y

z = ex+y · [1/((D −D) (D +D′ + 3)] · x
now D′x = 0, thus we can put D′ = 0

giving z = ex+y [1/D(D + 3)] · x
= ex+y (1/3D) (1−D/3 + · · · ) · x
= ex+y (1/3D) (x− 1/3)

= (1/3) ex+y (x2/2− x/3)

Thus G.S. = C.F. + P.I. = f(x+ y) + e−x · g(−x+ y) + (ex+y/3)(x2 − x/3) X

Similarly, by taking real parts, as in section 1.10.4,
we can integrate the case φ(x, y) = cos(ax+ by) · u(x, y) if u(x, y) is a polynomial.

The P.I. is z = [1/F (D,D′)] · cos(ax+ by) · u(x, y)
= ℜ [1/F (D,D′)] · ei(ax+by) · u(x, y)
= ℜ ei(ax+by) [1/F (D + ia,D′ + ib)] · u(x, y)

e.g. Find a P.I. of z = [1/(D2 +D′)2] cos(x− 2y) i.e. u = 1

= ℜ ei(x−2y) [1/((D + i)2 + (D′ − 2i)2)] 1 but D · 1 = 0 and D′ · 1 = 0

put D = 0 and D′ = 0 z = ℜ ei(x−2y)/− 5

= −1/5 · cos(x− 2y) X



2.6 Separable Solutions

Some equations have solutions of the form z = X(x) · Y (y)

so that δz/δx = X ′Y

δz/δy = XY ′

δ2z/δx2 = X ′′Y

δ2z/δy2 = XY ′′

and δ2z/δxδy2 = X ′Y ′

Many very important equations in Physics have such solutions, for example

the Wave Equation δ2z/δx2 = a2 δ2z/δy2 where y = time

Laplace’s Equation δ2z/δx2 + δ2z/δy2 = 0

the Diffusion Equation δ2z/δx2 = a2 δz/δy where y = time

2.7 The Wave Equation

the Wave Equation is δ2z/δx2 = a2 δz/δy

putting z = X(x) · Y (y) X ′′Y = a2 XY ′′

dividing by za2 X ′′/a2X = Y ′′/Y

Now (this is the crucial trick) since the LHS is a function of x only, and the RHS is a function of y
only, and x and y are independent, then LHS and RHS must both be equal to the same constant !
This is known as the ”separation constant”.
As we can obtain different solutions if the constant is positive or negative, we put the constant = ±k2

1) separation constant = +k2

then X ′′ = a2 k2X and Y ′′ = k2 Y

i.e. X = A cosh(akx) +B sinh(akx) and Y = C cosh(kx) +D sinh(kx)

so that z = X · Y = [A cosh(akx) +B sinh(akx)] · [C cosh(kx) +D sinh(kx)]

2) separation constant = −k2

then X ′′ = −a2 k2X and − Y ′′ = k2 Y

so that z = X · Y = [A cos(akx) +B sin(akx)] · [C cos(kx) +D sin(kx)]

2.8 Laplace’s Equation

Laplace’s Equation is δ2z/δx2 + δ2z/δy2 = 0 so we can just put a = i in the wave equation;
using cos(ikx) = cosh(kx) , cosh(ikx) = cos(kx)
and sin(ikx) = sinh(kx) , sinh(ikx) = sin(kx)
gives us the two solutions :

1) z = (A cos kx+B sin kx) · (C cosh ky +D sinh ky)

2) z = (A cosh kx+B sinh kx) · (C cos ky +D sin ky)

2.9 The Diffusion Equation

the Diffusion Equation is δ2z/δx2 = a2 δz/δy where y = time

putting z = X(x) · (Y (y), X ′′Y = a2XY ′

divide by a2z, X ′′/a2X = Y ′/Y = constant

= ±k2 , say



1) separation constant = +k2

then X ′′ = a2 k2X and Y ′ = k Y

giving X = A cosh(akx) +B sinh(akx) and Y = C exp(k2y)

so that z = X · Y = [A cosh(akx) +B sinh(akx)] · exp(k2y)

2) separation constant = −k2

then X ′′ = −a2 k2X and − Y ′′ = −k2 Y

giving z = X · Y = [A cos(akx) +B sin(akx)] · exp(−k2y)

2.10 Boundary Conditions

1) e.g.: Solve Laplace’s equation, given x = 0 when x = 0, y = 0 and when x = π, y = 0
Taking a hint from the π, we will use the form of solution which is trigonometric in x, ie:

z = (A cos kx+B sin kx) · (C cosh ky +D sinh ky)

from z = 0 when x = 0, we have A = 0

from z = 0 when y = 0, we have C = 0

thus z = b sin(kx) · sinh(ky)
from z = 0 when x = π, we have sin kx = 0

whence k = n where k is an integer X

2) e.g.: Solve Laplace’s equation, given z = 0 when x = 0 or x = π, and δz/δy = 0 when y = 0
The conditions on x are the same as in the previous example,

thus z = B sin(nx) · (C cosh(ny) +D sinh(ny))

so that δz/δy = nB cos(nx) · (nC sinh(ny) + nD cosh(ny))

but from δz/δy = 0 when y = 0, we have D = 0

so z = b sin(nx) · cosh(ny) X

3) e.g.: Solve Laplace’s equation, given z = 0 when x = 0 or x = π, and z → 0 as y → ∞
using z = (A cos kx+B sin kx) · (C eky +D e−ky)

assuming z = 0 when x = 0, then from z → 0 as y → ∞, we have C = 0

also from z = 0 when x = 0, we have A = 0

therefore z = B sin(kx) · e−ky

also, from z = 0 when x = π, k must be a positive integer.

thus z = B sin nx · e−ny with (n > 0) X

Now suppose that in this problem, we impose the extra boundary condition z = 1 when y = 0
In z = B sin nx · e−ny this would mean B sin nx = 1 which is impossible.
But what we can do is construct the solution z =

∑n
1 Bn sin nx · e−ny

Then, from z = 1 when y = 0, we have 1 =
∑n

1 Bn sin nx
and if we are only interested in the range 1 ≤ x ≤ π we can use the fact that

1 =
∑

2/(πn) · [1− (−1)n] sin(nx) for 1 ≤ x ≤ π

thus z =
∑

2/(πn) · [1− (−1)n] sin(nx) exp(−ny) X

= 4/π · [ e−y sin x+ (e−3y sin 3x)/3 + (e−5y sin 3x)/5 · · · ]
This is not valid for all y z =

∑

2/(πn) · [1− (−1)n] sin(nx) exp(−ny)

since δz/δx =
∑

2/π · [1− (−1)n] cos(nx) exp(−ny)

and δ2z/δx2 =
∑

2n/π · [(−1)n − 1] sin(nx) exp(−ny)

and δz/δy =
∑

2/π · [(−1)n − 1] sin(nx) exp(−ny)

and δ2z/δy2 =
∑

2n/π · [1− (−1)n] sin(nx) exp(−ny)



All these series diverge if y < 0, but they all converge if y > 0.
Thus our solution is valid in the domain 0 ≤ x ≤ π and y > 0

4) e.g.: Find a solution of Laplace’s equation,

valid in the region 0 ≤ x ≤ π and 0 ≤ y ≤ a

given z = 0 when x = 0 or x = π,

and z = 0 when y = 0

and z = x when y = a for 0 ≤ x ≤ π . This is then the region:

y

x
0

0

a

1z = 0

z
 =

 0

z
 =

 0

z = x

Laplace’s Equation is δ2z/δx2 + δ2z/δy2 = 0

therefore z = (A cos kx+B sin kx) · (C cosh ky +D sinh ky) see section 2.8

from z = 0 when x = 0, then A = 0

from z = 0 when y = 0, then C = 0

thus z = B sin kx · sinh ky

from z = 0 when x = π, then sin kπ = 0, so k = n

thus z = B sin nx · sinh ny

But now for z = x when y = a

we put z =
∑

Bn sin nx · sinh ny

giving z =
∑

Bn sin nx · sinh na

but using
∑

(2/n)(−1)n+1 sin nx = x for − π < x < π

we get Bn sinh(na) = (2/n)(−1)n+1

giving z = 2
∑

(−1n+1/n) · sin(nx) sinh(ny) / sinh(na) X

This solution is in fact valid for −π < x < 0, as well as in the region 0 < x < π
And as far as y is concerned, sinh(ny)/ sinh(na) = (eny − e−ny) / (ena − e−na)
which for large n becomes en(y−a) if y > 0
and if y > a, this diverges to infinity with large n ; thus 0 < y < a

5) e.g.: A thin rod of unity length is at 1◦C. Then the two ends are plunged into ice.
The rod’s thermal diffusivity is 1.

So : δΘ/δy = 1 · δ2Θ/δt2

and we must find Θ(x, t)

At the ends, Θ = 0 when x = 0 or x = 1 for all t

Initially, Θ = 1 when t = 0 for 0 < x < 1

Now the solution of the Diffusion Equation is z = (A cos kx+B sin kx) · exp(−k2y) (from section 2.9)
where we have taken the ’−k2 ’ solution, so that it decays as t → ∞



From Θ = 0 when x = 0 then A = 0

giving Θ = B sin kx exp−k2t

from Θ = 0 when x = 1 then k = nπ

giving Θ = B sin(nπx) exp(−n2π2t)

but for Θ = 1 when t = 0 we will have to

form the series Θ =
∑

Bn sin(nπx) exp(−n2π2t)

whence 1 =
∑

Bn sin(nπx) for 0 < x < 1

thus, Bn =
∫ 1

0
1 · sin(nπx) dx by Fourier

= (−2/nπ) [ cos((nπx) ]10
= (−2/nπ) ((−1)n − 1)

= (2/nπ) (1− (−1)n)

substituting, Θ = (2/π)
∑

(1/n) (1− (−1)n) sin(nπx) exp(−n2π2t) X

or Θ = (4/π) [ sin(πx) exp(−π2t) + (1/3) sin(3πx) exp(−9π2t) + · · · ]
Note that in, practice, the higher modes decay very rapidly.

2.11 Higher Derivatives

f

x

f ’

x

f ’ ’

x

The derivative f ′ = d/dx [f(x)] = limh→0(f(x+ h)− f(x)) / h
exists only if this limit is well-defined.
Many functions possess derivatives only up to a certain order. E.g.:

f(x) =

{

x3 for x ≤ 0

x2 for x ≥ 0

is continuous. Moreover, it is differentiable:

f ′(x) =

{

3x2 for x ≤ 0

2x for x ≥ 0

But f ′ is not differentiable:

f ′′(x) =

{

6x for x ≤ 0

2 for x ≥ 0

which is undefined at x = 0.

2.12 Leibnitz’s Theorem

Leibnitz’s Theorem concerns the n-th order derivative of a product.

For example: d(uv)/dx = (du/dx) · v + u · (dv/dx)
d2(uv)/dx2 = (du2/dx2)v + 2 (du/dx)(dv/dx) + u(d2v/dx2)

d3(uv)/dx3 = (du3/dx3)v + 3 (du2/dx2)(dv/dx2) + 3 (du/dx)(dv2/dx2) + u(d3v/dx3)

Obviously there is something like the Binomial Theorem going on.
Let us simplify our notation: put dnf/dxn ≡ fn
Assuming that u and v are both n times differentiable, we wish to prove

(uv)n = unv + nun−1v1 + (n(n− 1)/2)un−2v2 + · · ·+ nu1vn−1 + uvn

or (uv)n =

n
∑

0

(

n

r

)

un−r vr X

where

(

n

r

)

=
n(n− 1)(n− 2) · · · (n− r + 1)

r!



First we need to evaluate:

(

n

r

)

+

(

n

r − 1

)

=
n(n− 1) · · · (n− r + 1)

r!
+

n(n− 1) · · · (n− r + 2)

(r − 1)!

=
n(n− 1) · · · (n− r + 2)

(r − 1)!

(

n− r + 1

r
+ 1

)

=
(n+ 1)n(n− 1) · · · (n− r + 2)

(r − 1)!

=

(

n + 1

r

)

Now we prove the theorem by induction. First note that it is true for n = 1 : (uv)1 = u1v + uv1
So we assume that it is true for n = m, and then differentiate to evaluate for m+ 1 . . .

(uv)m = umv +mun−1v1 +m(m− 1)um−2v2/2! + · · ·+mu1vm−1 + uvm

(uv)m+1 = (um+1v + umv1) +

(

m

1

)

(umv1 + um−1v2) +

(

m

2

)

(um−1v2 + um−2v3) · · ·+ (u1vm + uvm+1)

= um+1v +

[

1 +

(

m

1

)]

umv1 +

[(

m

1

)

+

(

m

2

)]

um−1v2 +

[(

m

2

)

+

(

m

3

)]

um−2v3 · · ·+ uvm+1

= um+1v +

(

m+ 1

1

)

umv1 +

(

m+ 1

2

)

um−1v2 + · · ·+ uvm+1

so we see that it is also true for m+ 1. We have thus proved Leibnitz’s Theorem by induction.

For example: d5(x4ex)/dx5 = u5v + 5u4v1 + 10u3v2 + 10u2v3 + 5u1v4 + uv5

= ex (120 + 240x+ 120x2 + 20x3 + x4) X

2.13 Application of Leibnitz’s Theorem to Differential Equations

Certain Differential Equations can be solved using Leibnitz’s Theorem.
For example, Bessel’s Equation of order zero: xy′′ + y′ + xy = 0 , or xy2 + y1 + xy = 0

Obtain a series solution such that y = 1 and y′ = 0 when x = 0
so we set our solution as: y(x) = y(0) + xy1(0) + x2y2(0)/2! + x3y3(0)/3! + · · ·
and differentiate Bessel’s Equation n times : xyn+2 + nyn+1 + yn+1 + xyn + nyn−1 = 0
Therefore to find yn for x = 0, we put x = 0

i.e. n yn+1(0) + yn+1(0) + n yn−1(0) = 0

or yn+1(0) = −n/(n + 1) · yn−1(0)

But we know y(0) = 1 and y1(0) = 0

thus y2(0) = −y(0)/2 = −1/2 and y3 = 0

y4(0) = −3 y2(0)/4 = −3/4 · 1/2 and y5 = 0

y6(0) = −5 y4(0)/6 = −5/6 · 3/4 · 1/2
our solution is y = 1−(1/2)x2/2! + (1/2)(3/4)x4/4!− (1/2)(3/4)(5/6)x6/6! + · · ·

= 1− x2/22 + x4/(22.42)− x6/(22.42.62) + · · · X

which is indeed a Bessel function of the 1st kind, order zero.
If the right-hand side of the equation had been not zero, but a polynomial of order i,
we would normally handle this by differentiating n+ 3 ( n + i ? ) times, instead of n times.


