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Due to the positive feedback inherent in most active filter networks, any harmonic
distortion in the amplifier is increased. This worsening is calculated analytically
for a certain class of networks, and a simple but accurate breadboard method for
its measurement is suggested.

INTRODUCTION: This paper considers the behaviour of the circuit shown in Fig. 1.
The amplifier has gain g, a high input-impedance, and a low output-impedance. Any input
conductance can be regarded as part of the linear network. We are going to postulate that
this amplifier distorts, with harmonic distortion coefficients k2, k3, ..., following normal audio
terminology. This means that if we feed a 1-volt sine wave at 1 kHz into the amplifier, the
output will be a 1-kHz sine wave of amplitude g volts, plus a 2-kHz sine wave of amplitude
g.k2 volts, a 3-kHz sine wave of amplitude g.k3 volts, etc.

We will also assume that the k are sufficiently small (say, less than 1%) that their second-
order products may be neglected.

The linear network is made up of linear resistors, capacitors and inductors, and is assumed
to obey the following restrictions:

1) The input impedance at both inputs is non-zero.
2) The output impedance is non-infinite.
3) The resulting circuit of Fig. 1 is stable.

If the third of these conditions is not met, we have a high-distortion oscillator; if it is
obeyed, we have a filter. Many useful filters are of this class, for example Sallen and Key
filters [1], bootstrapped notch filters [2], etc.

We will show that the amplitudes of the distortion components at the output are worse
than the amplifier’s own values by a factor, the distortion-aggravation-factor, equal to the
gain of the positive feedback loop consisting of the amplifier and the β input of the network.
This gain is known from feedback theory to be 1/(1− gβ).

The detailed analysis is presented in Section 3.
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Figure 1: Circuit under consideration



1 CHARACTERISATION OF THE AMPLIFIER

The amplifier is assumed to be slightly nonlinear, and its distortion is characterised as
follows, following conventional audio terminology. For an input of Aejωt, the output is

gAejωt +
∞
∑

j=1

gA · kn · e
njωt (1)

where g is the gain of the amplifier and kn is the nth-harmonic distortion coefficient.
The total harmonic distortion (THD) is then given by

THD =

√

√

√

√

∞
∑

j=2

|kn|2

In general, kn is a phasor function of ω and of gA. Second-order products of the kn will
be neglected.

2 CHARACTERISATION OF THE LINEAR NETWORK

The linear network, which is being driven from two low-impedance sources, is charac-
terised by the transfer functions corresponding to the two inputs, that is, α(ω) for the α
input and β(ω) for the β input.

3 ANALYSIS

The signal vin is assumed to be a pure sine wave,

vin = Vin · e
jωt (2)

The signals u and vout are expanded as follows:

u =
∞
∑

1

Un · e
njωt (3)

vout = Vout · e
jωt +

∞
∑

2

Vout · k
′

n · e
njωt (4)

where the coefficients k
′

n are the resultant harmonic distortion coefficients of the whole
circuit.

Thus neglecting second-order products of k and k
′

, the amplifier produces an output
signal of

vout =
∞
∑

1

gUn · e
njωt +

∞
∑

2

gU1 · k
′

n · e
njωt (5)

where the first term represents the amplification of a distorted input, and the second repre-
sents the new distortion of the fundamental.

Then the linear network produces an output signal of

u =
∞
∑

1

Un · e
njωt = αω · Vin · e

jωt +
∞
∑

1

gβ(nω) · Un · e
njωt +

∞
∑

2

gβ(nω) · U1 · k
′

n · e
njωt (6)

Equating terms on both sides of Eq. (6),

U1 = α(ω) · Vin + gβ(ω) · U1 (7)



and for n 6= 1
Un = gβ(nω) · Un + gU1 · β(nω) · kn (8)

Then from Eq.(8), for n 6= 1

Un =
gU1 · β(nω) · kn
1− gβ(nω)

(9)

and from Eq.(7),

U1 =
α(ω) · Vin

1− gβ(ω)
(10)

Substituting Eqs. (9) and (10) into Eq.(5) to find vout gives

vout = gU1 · e
jωt =

∞
∑

2

g2U1 · β(nω) · kn · e
njωt

1− gβ(nω)
+

∞
∑

2

gU1 · kn · e
njωt (11)

But Eq.(4) is

vout = Vout · e
jωt +

∞
∑

2

Vout · k
′

n · e
njωt

Thus equating terms between Eqs.(4) and (11),

Vout = gU1 (12)

and

Vout · k
′

n =
g2U1 · β(nω) · kn

1− gβ(nω)
+ gU1 · kn (13)

Substituting Eq.(10) into Eq.(12), we get

Vout =
gα(ω)

1− gβ(nω)
· Vin (14)

which is the transfer function of the circuit, neglecting distortion.
Substituting Eq.(12) into Eq.(13) we get

Vout · k
′

n =
Vout · gβ(nω) · kn

1− bβ(nω)
+ Vout · kn (15)

or

k
′

n = kn ·
1

1− gβ(nω)
(16)

Note that Vout has not disappeared, since kn is in general a function of the output
amplitude.

4 COMMENT

This equation means that the fact of employing the amplifier in this filter circuit worsens
its distortion coefficients by the factor

1/(1− gβ(nω))

which we have called the distortion aggravation factor.
Note that in the circuits of Fig. 2, and indeed in almost all practical filters of this

class, β(0) = 0 and β(∞) = 0 ; thus at frequencies well above and below the characteristic
frequencies of the filter, the amplifier distortion is not aggravated by the action of the filter.

It may also be pointed out that a similar analysis to that above can be applied to any
foreign signal introduced by the amplifier, such as noise, for example. The amplifier’s spot
noise at the frequency ω will also be worsened by 1/(1− gβ(nω)).
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Figure 2: a: Sallen and Key filter b: Bootstrapped notch filter

5 METHOD OF MEASUREMENT

The estimation of the distortion-aggravation factor is of some interest to the designer
since it determines the quality of the amplifier he is obliged to use.

The following breadboard method of measurement is proposed.

5.1 Step 1 (Fig.3)

When Vin is a sine wave of frequency nω, Vout is measured. By Eq. [14] this will be

Vout
1 =

gα(nω)

1− gβ(nω)
· Vin

g
β

α
Vin Vout1

Figure 3: Step 1
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Figure 4: Step 2

5.2 Step 2 (Fig.4)

Now the loop is broken, and the β input of the linear network is connected to earth
(Fig.4), and the output voltage is measured again. Now

Vout
2 = gα(nω) · Vin (17)



by the definition of α. Thus the ratio of the two measurements is

Vout
1

Vout
2
=

1

1− gβ(nω)
(18)

which is the distortion-aggravation factor from Eq. (16).
This method is quick and precise and applies to all filters of this class: Bessel, Butter-

worth, Tschebyscheff, or indeterminate, and for engineers with limited access to the neces-
sary hardware or software [3], [4] it forms a practical alternative to a computer analysis of
the linear network.

6 EXAMPLES

1) As an illustration, the third-order low-pass Tschebyscheff filter [5] was constructed
(Fig.5) which has a predicted corner frequency of 1940 Hz. The measurements are shown
in Table 1.
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Figure 5: Third-order Tschebyscheff filter

It will be observed that over a range of more than three octaves the distortion-aggravation
factor of this filter is greater than 10, and that near the corner frequency it rises to more
than 80. With this information, the designer would, for example, be able to rule out of hand
the use of a high-distortion amplifier (such as a simple emitter follower with its varying Vbe

distortion, or a µA741 with its varying input-stage, low open-loop gain at high frequencies,
and high slew-induced distortion [6]) to realise amplifier A.

nω/2π V1 V2 Distortion Aggravation
(Hz) (volts) (volts) Factor V1 / V2

330 6.70 0.723 9.3
390 6.53 0.598 10.9
470 6.28 0.486 12.9
560 6.04 0.396 15.2
680 5.86 0.316 18.5
820 5.60 0.256 21.9
1000 5.60 0.195 28.7
1200 5.80 0.148 39.2
1500 6.63 0.106 62.6
1800 6.53 0.0806 81.0
2200 3.15 0.0568 55.5
2700 1.28 0.0384 33.3
3300 0.606 0.0626 9.68



It is even possible that the reputation possessed by Tschebyscheff filters in audio circles
for ”sounding too harsh” is due not to the sharp rolloff, but to the distortion-aggravation
effect discussed in this paper.

2) Dobkin discusses [2] the 60-kHz notch filter of bootstrapped twin-T form (Fig.6).
The factor 1/(gβ(nw) can be read directly from his Figure 2; at 51 Hz and at 71 Hz it is
approximately 30 dB ≃ 30 times; at 42 and 83 Hz it is approxiamately 20 dB = 10 times.

−

+

270p 270p

5M

540p

10M 10M

Figure 6: High-Q notch filter

Thus here too a certain prudence would be indicated in the choice of amplifier, par-
ticularly if the notch was being constructed at a higher frequency, such as 6 kHz, where
distortion components are more common.
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