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It is known that the harmonic distortion of an active filter is greater than the
distortion of the operational amplifier itself. Positive- and negative-feedback lin-
ear filters, namely, Butterworth, Chebyschev, Bessel and band-pass filters, are
analysed. The distortion multiplication factor Kd is defined and plotted versus
frequency. The maximum values of Kd found for several filter configurations by
means of a computer program are given in a form useful for filter designers.

INTRODUCTION: The fact that the harmonic distortion in a positive-feedback (PF)
active filter is much greater than the distortion in its operational amplifier is not new [1].
The closer the distortion is to the filter cutoff-frequency, the larger is its increase. Distortion
can be increased by up to two orders of magnitude. Consequently it has been suggested
that the unpleasant auditive sensation caused by some filters is due to this fact, and not to
the excessive phase rotation usually associated with high-slope filters.

This conclusion was applied to negative-feedback (NF) active filters in a previous publi-
cation [2], but the results of this work are not easily applicable to the improvement of filter
design, since they involve the solving of complex equations.

Our investigation has a two-fold goal. First we want to find simple equations which
will enable the designer to quickly estimate the increase of distortion in each active filter.
Second, we want to try to make the method as widely applicable as possible, so that it holds
for filters not included in this paper as well as for filters to be developed in the future.

1 DISTORTION MULTIPLICATION FACTOR

The definition of a distortion multiplication factor will help us to estimate quickly the
particular behaviour of each filter. We will call it Kd and it will be expressed in decibels for
ease of notation and calculus.

Kd(f) = 20 log
distortion of active filter at frequency f

distortion of operational amplifier with g = 1
(1)

It is evident that Kd(f) will depend on the frequency (See Fig. 13). In this work, as will
be explained later, it is demonstrated that the behaviour of Kd(f) is represented by a bell-
shaped curve, which has its maximum value near the filter cutoff-frequency f3. This holds
not only for low-pass or high-pass filters, but also for band-pass filters at the center-frequency
f0.

Then we can concentrate only of the maximum value of Kd(f). Thus we are transforming
a problem of complex solution into a much simpler problem, which consists of determining
the maximum distortion to be obtained with each filter configuration. We know beforehand
that for all filters this value will be near f3 or f0. Then

Kd = [Kd(f)]max (2)



We have thus developed a method that can be applied easily to filter design. For example,
we want to design a filter with a harmonic distortion less than 0.1% = −60 dB. Looking at
the charts of Kd for each configuration, we see that, for example, Kd = 25 dB. Consequently,
the operational amplifier will have a distortion with unity gain below −(60 + 25) = −85 dB
(0.0056%).

2 Kd IN POSITIVE- AND NEGATIVE-FEEDBACK FILTERS

The operational amplifier with which the filter is going to be built is discussed next.
When the operational amplifier is connected for unitary gain and is driven by an ideal
frequency generator V1, it delivers to its output

V0 = V1 + V2 + V3 + · · ·+ Vn

where V1 is the fundamental frequency and V2, V3, . · · · are harmonic distortion components.
The harmonic components will be multiplied by Kd, thus increasing the distortion mea-

sured at the filter output. The equivalent circuit of the operational amplifier with distortion
shown in Fig. 1(a) will be used to anlyse this problem. The distortion generators Vn are
in series with an ideal distortionless amplifier. However, this circuit can be simplified even
further if we take into account that the distortion values of an operational amplifier are
generally low. Consequently the second-order products will be negligible, and it will not
be necessary to analyse all the generators working at the same time. We will just have to

g = 1
Vi Vo

V2 V3 Vn

g = 1
Vi Vo

Vw
(ideal) (ideal)

Fig. 1a Fig. 1b

Figure 1: Equivalent circuit of operational amplifier with distortion

replace V1 + V2 + V3 + · · ·+ Vn by a single distortion generator Vω whose frequency can be
changed so that it replaces any of the harmonics [Fig. 1(b)]. From the viewpoint of circuit
theory this implies assuming that the system is linear, and in fact it almost is, since the
second-order nonlinearity is negligible.
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Figure 2: Positive-feedback active filter

Fig. 2 shows the equivalent circuit of a positive-feedback active filter. This circuit is
valid for any type of filter. The passive network N is defined by two transfer factors α and
β. Then for this circuit, and for Vi = 0,

V1 = gβ(ω)V0

V0 = Vω + V1 = Vω + gβ(ω)V0



V0 =
Vω

1− gβ(ω)V0

Since Kd(f) = 20 log
V0
Vω

then for a positive-feedback filter

Kd(f) = 20 log
1

1− gβ(ω)
(3)

Equation 3 will enable us to calculate Kd according to the passive network transfer β(ω).
A maximum value of Kd(f) will be obtained when β(ω) is real and has a maximum (that
is, when it is close to 1).

Let us now analyse the negative-feedback filter Fig. 3.
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Figure 3: Negative-feedback active filter

V1 = −Aβ(ω)V0

V0 = V1 + V
′

ω = V
′

ω − Aβ(ω)V0

V0 =
V

′
ω

1 + Aβ(ω)V0

If we apply the definition of Eqn. 1,

Kd (f) = 20 log
[Vo]

β
ω

[Vo]
β=1
ω

that is, we consider β = 1 in order to obtain in the denominator the distortion corresponding
to the closed-loop condition (g = 1) given by V

′
ω /(1 + A). From this viewpoint, and if we

want to be accurate, we must say that V
′
ω is not the open-loop distortion, but the equivalent

input-distortion as defind by Baxandall [3]. Finally the quotient will be

Kd (f) = 20 log
V

′
ω / [1 + Aβ(ω)]

V ′
ω / (1 + A)

= 20 log
1 + A

1 + Aβ(ω)

Taking into account that A� 1, we have, for negative-feedback filters,

Kd (f) = 20 log
1

β(ω)
(4)

Equations (3) and (4) will enable us to calculate Kd for all active filters by just solving
the passive network in order to obtain β. Eqs. (3) and (4) refer the filter distortion to
the value that corresponds to the amplifier with unitary gain. However, in real operational
amplifiers, distortion can have different values depending on which input is selected, positive
or negative. This is due to the inherent distortion of the input differential pair, which
is, respectively, included in or excluded from the feedback loop. This discrepancy with
the theoretical model can generally be neglected and does not alter noticeably the results
obtained from Eqs. (3) and (4).



3 Kd VALUES FOR ORDINARY FILTERS

Since an analytic solution of the passive network beta transfer function is quite complex,
we decided to use a computer program, the CNAP, supplied by Hewlett-Packard. Thus the
charts for Figs. 4 and 6 were obtained. Th program was also used to determine whether
the maximum value of Kd(f) occurred exactly at the cutoff-frequency. With this important
information we went on to solve the network analytically, but just for the Kd frequency.
Likewise we were able to obtain simple equations to calculate Kd values that will enable the
designer to make do without charts or computer programs. In Figs. 4 and 6 the computed
exact Kd values are also included.

Fig. 4 shows the popular third-order Chebyschev filter. For a filter with a 2-dB ripple
the maximum Kd(f) value is 38.4 dB, which coincides with the value obtained by Billam
[1] by means of experimental methods. It must be noted that this filter multiplies 83 times
the distortion of the amplifier used.
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Figure 4: Third-order positive-feedback Chebyschev filter

Ripple-factor ε [dB] Kd [dB]
0.5 28.4
1 32.4
2 38.4
3 43.4

Fig. 5 shows, as a calculation example, the five-node network used to solve the filter in
Fig. 4. The generator placed between nodes 4 and 5 has the function of subtracting 1 V
from the voltage in node 4. The output obtained is thus β(ω)− 1. This output enables the
computer to print the values of 20 log[β(ω)− 1], which will be the same as the Kd(f) value
given by Equ. 3, except for the sign. As regards negative-feedback filters, it is not necessary
to use the generator since the β transfer can be obtained directly.

Ci
C2

C1 R

R

R

1Ω

1 A/v

gmV(1-0)INPUT
= 1v

OUTPUT
Vo = β(ω)−1

1 2

3

4

5

Figure 5: Network of third-order Chebyschev filter, used for CNAP computer program
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Figure 6: Negative-feedback bandpass filter
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Exact computed values: Q Kd [dB] Exact expression: 20 log (1 + 2Q2)
1 9.5
3 25.6
6 37.3
10 46.1
20 58.1
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Figure 7: Positive-feedback bandpass filter
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Exact computed values: Q Kd [dB] Approximate expression: 20 log (1/2 + 3Q)
0.5 5.7 (error < 0.8 dB)
1 10.5
3 19.4
10 29.7
40 40.8
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Figure 8: Negative-feedback lowpass and highpass filters
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Exact computed values: Q Kd [dB] Approximate expression: 20 log (1 + 3Q2)
0.5 5.2 (error < 0.3 dB)

0.707 8.3
1.5 17.9
3 29.0
10 49.6
20 61.6
40 73.5

In the charts of Figs. 6 - 9 the resistors and capacitors were standardised in accordance
with the Q factors of the filter. This fact is very important, because the designer always
knows beforehand the Q for which the filter must be designed. Inversely, if the filter has
already been calculated by means of charts or computer programs, the designer will be able
to find the Q of each section of the filter, and from it the Kd factor, since the former is
dependent on the relationship of capacitors or resistors. For this purpose Figures 6 - 9
include, beside the charts, the equations that enable the designer to calculate the filters and
their Q.
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Figure 9: Positive-feedback lowpass and highpass filters
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Exact computed values: Q Kd [dB] Exact expression: 20 log (1 + 2Q2)
0.5 3.5

0.707 6.0
1.5 14.8
3 25.6
10 46.0
20 58.1
40 70.1

We shall now see the analytic expression that provides Kd as a function of Q for a low-
pass filter with positive feedback (Fig. 9). By solving the network with a computer, we
learned that the maximum value for Kd(f) occurs for a frequency identical to the cutoff
frequency f3. Thus we will calculate the β value for that frequency (designated ω0 in Fig.9).



From the low-pass circuit in Fig.9 we can build the β network of Fig.10. In order to solve
the latter, we will take the following into account.

Standardising ω0 = 1, we have R
√
C1C2 = 1

Then C2 =
1

R2C1

(5)

and 4Q2 =
C2

C1

Hence C2 = 4Q2C1 (6)

Equating Eqs. (5) and (6) 2QRC1 = 1 (7)

Solving 1/C1 and 1/C2 from (6) and (7)
1

C1

= 2QR and
1

C2

=
R

2Q
(8)
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Figure 10: β network for lowpass filter with positive-feedback

We now calculate V1 (Fig. 10): V1 =
RZRC1 / (R + ZRC1)

XC2 + RZRC1/(R + ZRC1)

But ZRC1 = R − j 1/C1

because ω0 = 1, and so V1 =
R (R− j/C1)

−j /C2(R +R (R− j/C1)) +R (R− j/C1)

Replacing by Eqn(8) and solving: V1 =
Q− j2Q2

−j(2Q2 + 1)
(9)

and β(ω0) = V1
XC1

R +XC1

= V1
−j/C1

R− j/C1

= V1
−j2Q

1− j2Q

Using V1 from (9) and solving: β(ω0) =
2Q2

2Q2 + 1

Then Kd = 20 log
1

1− β(ω0)

= 20 log
1

1 − 2Q2/(2Q2 + 1)

and hence Kd = 20 log(2Q2 + 1) (10)

Eqn. (10) allows us to calculate the value of Kd as a function of Q for the low-pass and
high-pass filters in Fig. 9.

In our second example we examine a negative feedback low-pass filter. The filter in Fig.
8 has its maximum value of Kd(f) very close to f3, but for lower values of Q, Kd(f) is
slightly displaced. For higher values of Q it is almost coincident with f3. As the previously-
mentioned drift is very small, we use an approximate expression of Kd for design purposes
only, Thus we consider that the ω0 value of Fig. 8 gives us the maximum value of Kd(f).
Fig. 11 shows the β network to be analysed.
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Figure 11: β network for lowpass filter with negative-feedback

Similarly to our previous example, we find

1

C1

= 3QR
1

C2

=
R

3Q
(11)

We calculate ZA and ZB and substitute Eqn. (11)

ZA = R
1− j3Q
2− j3Q

ZB = R
1− j3Q
2− j3Q

So V1 =
ZB

ZA + ZB

Replacing and solving V1 =
2− 3jQ

3 + 9Q2 − j3Q
also β(ω0) = V1 + VR

and VR = (1− V1)
R

R− j/C1

Replacing and solving further, β(ω0) =
3

3 + 9Q2 − j3Q

then Kd = 20 log

∣∣∣∣ 1

β(ω0)

∣∣∣∣
= 20 log [ (1 + 3Q2)2 +Q2 ]1/2

and hence approximately Kd = 20 log ( 1 + 3Q2 ) (12)

The value given by Eqn. (12) is only approximate. However, if we compare it with the
exact values of the chart in Fig. 8, we see that its maximum error is 0.3 dB. Consequently, it
can be considered accurate for practical purposes. It is possible to find analytic expressions
for the remaining types of active filters following the above procedures.

In Figs. 6-9 the designer will find the exact or an approximate expression that will
permit calculating Kd directly. Note that among the the positive- and negative-feedback
realisations of low-pass or high-pass filters (Figs. 8 and 9) the differences in Kd values for the
same Q are in fact small. Conversely, in second-order pass-band filters the differences are
very important, since the Kd values for the Kd value for the positive-feedback configuration
is much lower than that for the negative-feedback configuration.

It is obvious that we have not dealt with all the types of active filters. However, the
method we have described holds for any kind of filter, either by the solution of the β
network by computer, or by analytical calculus for frequencies f3 or f0.



4 HOW TO CALCULATE Qmax FOR BUTTERWORTH,
CHEBYSCHEV AND BESSEL FILTERS

When we design a filter of higher than second order, we build it with two or more second-
order sections. Each of these sections will have its own distortion due to the Q with which
it operates.

As the distortion increases by Kd and since Kd is proportional to Q2, the overall filter
distortion will be almost the same as the distortion in the section of higher Q. This is
why the designer should find the Q that corresponds to each pair of conjugated poles.
The maximum value (corresponding to a specific filter section) will then give the overall
distortion. The value of Q for a pair of poles α± jβ is given by

Q =

√
α2 + β2

2α
(13)

As regards the Butterworth polynomials, the value can be calculated easily, since the
poles are given by Weinberg [4].

S2V+1 = − sin
(2V + 1)π

2n
+ j cos

(2V + 1)π

2n

where V = 0, 1, 2, ..., n− 1, with n being the filter order.

If we now apply Eqn. (13), Q =
1

2 sin[ (2V + 1)π/2n ]

For V = 0 we have Qmax =
1

2 sin(π/2n)
(14)

Then we can find the Qmax for an n-th order Butterworth filter by means of Eqn. (14).
For a simple, second-order filter, Q = 0.707, and for n = 10, Qmax = 3.196. If we use a
positive-feedback configuration similar to the one in Fig. 9, then Kd = 6 dB in the first
example and 26.6 dB in the second. This implies that if the same distortion is desired in
both filters, then in the second example (n = 10) it is necessary to have an amplifier with
ten times less distortion than in the first example.

For Chebyschev filters the analytic expression is more complex. So it will be convenient
to obtain the root values from a polynomial chart [4]. To have a comparative reference,
with a ripple of 1 dB and n = 4, we have Qmax = 3.56. On the other end, with a ripple of
3 dB and n = 10, Qmax = 38.85. In this case, Eqn. (13) is used to calculate the Q values.

Bessel filters can also be calculated according to the roots found in the charts, but the Q
values are so low that the do not cause any noticable increase in distortion. For instance,
for n = 10, we have Qmax = 1.42 in a Bessel filter.

Eqn. (13) will be useful to calculate any other type of filter, provided the roots of the
approximate polynomial are known.

5 EXPERIMENTAL MEASUREMENT of Kd(f)

The following method can be used if we want to design a new kind of active filter with Kd

unknown. Instead of calculating the Kd value, it is sometimes faster to measure it directly.
For this purpose the simple circuit layouts in Fig. 12 can be used. For positive feedback
Fig 12(a) is used, based on the analysis circuit in Fig. 2. This method allows the designer
to find Kd(f) by selecting V1 = 10 mV. It is also possible to plot the Kd(f) curve by means
of a standard frequency-reponse plotter (on paper or cathode-ray tube). Fig. 13 shows the
Kd(f) curve made by such a plotter, connected as shown in Fig. 12(a).
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Figure 12: Analog experimental method used to plot Kd(f) (a) Positive feedback, (b) Negative feedback

For negative-feedback filters the configuration shown in Fig. 12(b) is used. This circuit
enables the designer to obtain the value of 1/β(ω) directly. Here it is also possible to plot
the output. Fig. 14 shows the superimposed curves of Kd(f) for the same filter in the
positive- and negative-feedback configuration.

Figure 13: Plot of Kd(f) for third-order Chebyschev filter Fc = 2kHz; ε = 2 dB

Figure 14: Plot of Kd(f) for second-order positive- and negative-feedback Butterworth filters Fc = 1 kHz



6 CONCLUSION

The concept of the distortion multiplication factor has been analysed, and a simple
definition is given of its wide application. We have derived equations that enable us to
calculate Kd as a function of Q, either accurately or with sufficient approximation. We have
demonstrated how to calculate Qmax so as to build a filter. The last two concepts enable us
to predict the distortion that will be obtained from any type of filter with the most common
circuit configurations. Finally, we have introduced three ways of finding the Kd value of
an active filter. The first method is based on the resolution of a network, by means of a
computer; the second is analytical, using Eqs. (3) and (4); and the third is experimental,
based on a very simple measurement (Fig. 12).
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